Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 662: 995-1004, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387368

RESUMO

Designing highly efficient and stable electrocatalysts for hydrogen evolution reactions (HER) is essential to the production of green and renewable hydrogen. Metal-organic framework (MOF) precursor strategies are promising for the design of excellent electrocatalysts because of their porous architectures and adjustable compositions. In this study, a hydrogen-bonded organic framework (HOF) nanowire was developed as a precursor and template for the controllable and scalable synthesis of CoRu-MOF nanotubes. After calcination in Ar, the CoRu-MOF nanotubes were converted into N-doped graphene (NG) nanotubes with ultrafine CoRu nanoclusters (hereon called Co-xRu@NG-T; x  = 0, 5, 10, 15, 25 representing the Ru content of 0-0.25 mmol; T = 400 °C to 700 °C) that were densely encapsulated and isolated on the shell. Taking advantage of the synergistic effects of the porous, one-dimensional hollow structure and ultrafine CoRu nanoclusters, the optimized Co-15Ru@NG-500 catalyst demonstrated superior catalytic performance for HERs in alkaline electrolytes with an overpotential of only 30 mV at 10 mA cm-2 and robust durability for 2000 cycles, which outperforms many typical catalytic materials, such as commercial Pt/C. This work introduces a novel high-efficiency and cost-effective HER catalyst for application in commercial water-splitting electrolysis.

2.
Eur Heart J ; 42(47): 4847-4861, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34570211

RESUMO

AIMS: Our previous study demonstrated that Ca2+ influx through the Orai1 store-operated Ca2+ channel in macrophages contributes to foam cell formation and atherosclerosis via the calcineurin-ASK1 pathway, not the classical calcineurin-nuclear factor of activated T-cell (NFAT) pathway. Moreover, up-regulation of NFATc3 in macrophages inhibits foam cell formation, suggesting that macrophage NFATc3 is a negative regulator of atherogenesis. Hence, this study investigated the precise role of macrophage NFATc3 in atherogenesis. METHODS AND RESULTS: Macrophage-specific NFATc3 knockout mice were generated to determine the effect of NFATc3 on atherosclerosis in a mouse model of adeno-associated virus-mutant PCSK9-induced atherosclerosis. NFATc3 expression was decreased in macrophages within human and mouse atherosclerotic lesions. Moreover, NFATc3 levels in peripheral blood mononuclear cells from atherosclerotic patients were negatively associated with plaque instability. Furthermore, macrophage-specific ablation of NFATc3 in mice led to the atherosclerotic plaque formation, whereas macrophage-specific NFATc3 transgenic mice exhibited the opposite phenotype. NFATc3 deficiency in macrophages promoted foam cell formation by potentiating SR-A- and CD36-meditated lipid uptake. NFATc3 directly targeted and transcriptionally up-regulated miR-204 levels. Mature miR-204-5p suppressed SR-A expression via canonical regulation. Unexpectedly, miR-204-3p localized in the nucleus and inhibited CD36 transcription. Restoration of miR-204 abolished the proatherogenic phenotype observed in the macrophage-specific NFATc3 knockout mice, and blockade of miR-204 function reversed the beneficial effects of NFATc3 in macrophages. CONCLUSION: Macrophage NFATc3 up-regulates miR-204 to reduce SR-A and CD36 levels, thereby preventing foam cell formation and atherosclerosis, indicating that the NFATc3/miR-204 axis may be a potential therapeutic target against atherosclerosis.


Assuntos
Aterosclerose , MicroRNAs , Animais , Aterosclerose/genética , Células Espumosas , Humanos , Leucócitos Mononucleares , Camundongos , MicroRNAs/genética , Fatores de Transcrição NFATC/genética , Pró-Proteína Convertase 9
3.
Ying Yong Sheng Tai Xue Bao ; 21(11): 2792-8, 2010 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-21361001

RESUMO

In order to explore the effects of long-term fertilization on the microbiological characters of red soil, soil samples were collected from a 19-year long-term experimental field in Qiyang of Hunan, with their microbial biomass carbon (MBC) and nitrogen (MBN) and microbial utilization ratio of carbon sources analyzed. The results showed that after 19-year fertilization, the soil MBC and MBN under the application of organic manure and of organic manure plus inorganic fertilizers were 231 and 81 mg x kg(-1) soil, and 148 and 73 mg x kg(-1) soil, respectively, being significantly higher than those under non-fertilization, inorganic fertilization, and inorganic fertilization plus straw incorporation. The ratio of soil MBN to total N under the application of organic manure and of organic manure plus inorganic fertilizers was averagely 6.0%, significantly higher than that under non-fertilization and inorganic fertilization. Biolog-ECO analysis showed that the average well color development (AWCD) value was in the order of applying organic manure plus inorganic fertilizers = applying organic manure > non-fertilization > inorganic fertilization = inorganic fertilization plus straw incorporation. Under the application of organic manure or of organic manure plus inorganic fertilizers, the microbial utilization rate of carbon sources, including carbohydrates, carboxylic acids, amino acids, polymers, phenols, and amines increased; while under inorganic fertilization plus straw incorporation, the utilization rate of polymers was the highest, and that of carbohydrates was the lowest. Our results suggested that long-term application of organic manure could increase the red soil MBC, MBN, and microbial utilization rate of carbon sources, improve soil fertility, and maintain a better crop productivity.


Assuntos
Carbono/análise , Fertilizantes , Nitrogênio/análise , Microbiologia do Solo , Solo/análise , Agricultura/métodos , Fatores de Tempo , Triticum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...